
J. Fluid Mech. (2003), vol. 485, pp. 191–220. c© 2003 Cambridge University Press

DOI: 10.1017/S0022112003004476 Printed in the United Kingdom
191

Destabilization of a creeping flow by interfacial
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wavenumbers
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Creeping flow of a two-layer system with a monolayer of an insoluble surfactant on
the interface is considered. The linear-stability theory of plane Couette–Poiseuille flow
is developed in the Stokes approximation. To isolate the Marangoni effect, gravity
is excluded. The shear-flow instability due to the interfacial surfactant, uncovered
earlier for long waves only (Frenkel & Halpern 2002), is studied with inclusion of
all wavelengths, and over the entire parameter space of the Marangoni number M ,
the viscosity ratio m, the interfacial velocity shear s, and the thickness ratio n (� 1).
The complex wave speed of normal modes solves a quadratic equation, and the
growth rate function is continuous at all wavenumbers and all parameter values.
If M > 0, s �=0, m < n2, and n> 1, the small disturbances grow provided they are
sufficiently long wave. However, the instability is not long wave in the following
sense: the unstable waves are not necessarily much longer than the smaller of the
two layer thicknesses. On the other hand, there are parametric regimes for which
the instability has a mid-wave character, the flow being stable at both sufficiently
large and small wavelengths and unstable in between. The critical (instability-onset)
manifold in the parameter space is investigated. Also, it is shown that for certain
parametric limits the convergence of the dispersion function is non-uniform with
respect to the wavenumber. This is used to explain the parametric discontinuities of
the long-wave growth-rate exponents found earlier.

1. Introduction
There has been considerable interest in the instability of two-layer flows as well as

in the influence of surfactants, since they occur in many industrial and biomedical
applications such as oil recovery (e.g. Slattery 1974), lubricated pipelining (e.g. Joseph
& Renardy 1993), coating in photography (e.g. Kistler & Schweizer 1997), and the
obstruction to airflow in the small airways of the lungs (e.g. Halpern & Grotberg
1993; Otis et al. 1993).

Yih (1967) discovered an instability of a plane Couette–Poiseuille flow of two fluid
layers with different viscosities and densities by considering long waves in the linear
theory. The study of this instability was extended to shorter waves and different
parametric conditions by many researchers. An overview and summary of this work
was given by Joseph & Renardy (1993) and, more recently, by Charru & Hinch
(2000). The Yih instability is due to inertia effects, which will play no role in the
present paper.

Another well-studied two-fluid system is the core–annular flow (CAF), a layered
arrangement of two immiscible fluids that fill a circular pipe and flow along its axis.
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Examples of such flows include separated flow of steam and water in power generation
facilities and lubricated pipelining of crude viscous oils (e.g. Joseph & Renardy 1993).
These types of flows are also found in the lungs where air passes through airways
lined with a viscous liquid layer. Closure of the small airways of the lungs may occur
as a result of a surface-tension-driven instability. This type of capillary instability
often happens in premature neonates who do not produce sufficient quantities of
surfactant that tends to keep the surface tension low and is vital for healthy, normal
breathing. It has been shown that the presence of surfactant can delay and potentially
prevent the capillary instability (Halpern & Grotberg 1993; Otis et al. 1993). Linear
stability theory for a thin stagnant film shows that in the limit of an immobilized
insoluble surfactant monolayer, the instability growth rate is reduced by a factor of
four compared to the clean surface case (Carroll & Lucassen 1974; Cassidy et al.
1999). Recently (in an unpublished work), H. Wei & D. Rumschitzki considered the
combined effects of the basic core–annular flow, capillarity and surfactant. For small
Marangoni numbers, they found that the coupling between surfactants and the base
core–annular flow could enhance the capillary instability: the maximum growth rate
increases somewhat and the range of unstable wavenumbers expands.

In general, the effect of introducing insoluble surfactants (without changing the
base flow) always appeared in the literature to be stabilizing or neutral. Our recent
work (Frenkel & Halpern 2002) suggests that this is due to the fact that in those
earlier cases the interfacial velocity shear was zero. This was the case because the surf-
actant systems studied there were either single-fluid flows with a free surface (Whitaker
1964; Whitaker & Jones 1966; Yih 1966; Anshus & Acrivos 1967; Lin 1970; De Wit,
Gallez & Christov 1994; Rubinstein & Bankoff 2001) or multifluid systems with no
base flow (Kwak & Pozrikidis 2001). Two-fluid systems combining the imposed basic
flow with interfacial surfactant were not studied until recently. In Frenkel & Halpern
(2002), we showed that the simultaneous presence of the surfactant and velocity shear
at the interface is sufficient for the instability (in a certain range of parameters) of the
basic flow. We believe that it was the first example of a system stable in the absence of
surfactants but destabilized by the introduction of an interfacial surfactant (such that
the basic flow remains intact). Also, it provided the first example of the destabilization
of a stagnant two-fluid system by the imposition of a Stokes flow. The instabilities
of other, surfactant-less two-layer wall-bounded Stokes flows – due to such factors
as gravity (Babchin et al. 1983b; Halpern & Frenkel 2001), molecular van der Waals
forces (Babchin et al. 1983a), capillarity (Frenkel et al. 1987; Hu & Joseph 1989),
buoyancy (Gumerman & Homsy 1974) – can be seen to have the same growth rates
as in the stagnant case, so for those cases the basic flow is irrelevant to the linear
instability (although important for the nonlinear saturation of the instability).

However, in Frenkel & Halpern (2002) we considered only long-wave behaviour of
the surfactant instability (of the two-layer Couette–Poiseuille flow between two parallel
plates). In the present work, we extend the study to include all wavenumbers. It turns
out that this Stokes-flow instability lends itself to a rather complete characterization.
Some questions left unanswered in the long-wave theory are resolved here.

In § 2, the governing equations for the system in question are laid out. The linear-
stability analysis using normal modes with arbitrary wavenumbers is presented in § 3.
Results are given in § 4, and some concluding remarks are given in § 5.

2. Governing equations
The exact formulation of the problem (as given earlier in Frenkel & Halpern

2002) is as follows. Consider two immiscible fluid layers between two infinite parallel
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Figure 1. Definition sketch for a two-layer Couette–Poiseuille flow between a fixed plate at
y∗ = −d1 and a moving plate at y∗ = d2. The disturbed interface y∗ = η∗(x∗, t∗) is shown as
a sinusoidal solid curve. Γ ∗(x∗, t∗) is the concentration of the insoluble surfactant monolayer.
The solid curve spanning the flow is the profile of the basic velocity (bold arrows). (If the
pressure gradient is turned off, the velocity profile becomes piecewise-linear: the Couette flow.)

plates, as in figure 1 (see also figure 1 of Yih 1967). Let the basic flow be driven
by the combined action of an in-plane steady motion of one of the plates and a
constant pressure gradient parallel to the plate velocity and directed in the same or
opposite sense. It is well known that the basic ‘Couette–Poiseuille’ velocity profiles are
steady and vary (quadratically) in the spanwise direction only, and the basic interface
between the fluids is flat. For simplicity, let the densities of the two fluids be equal.
Then gravity does not affect the stability of the basic flow, and is disregarded below.
It is convenient to use the reference frame of the unperturbed interface. Let y∗ be
the spanwise, ‘vertical’, coordinate (the symbol ∗ indicates a dimensional quantity).
Let the interface be at y∗ = 0 and the y∗-axis directed from the thinner layer to the
thicker one; we will call this the ‘upward’ direction (clearly, since there is no gravity,
the notions of ‘up’ and ‘down’ are a matter of convention). Thus, d1 < d2 holds, where
d1 and d2 are the thicknesses of the lower and upper fluids, respectively. The direction
of the ‘horizontal’ x∗-axis is chosen so that velocity of the lower plate, located at
y∗ = −d1, is −U1 if U1 is the relative speed of the interface and the lower plate.
The velocity U2 of the upper plate (situated at y∗ = d2) is positive for the purely
Couette flow; however, it does not have to be positive in the presence of a pressure
gradient. For the Couette flow, in which the velocity profiles are linear, it is easy to
see that, in terms of U , the velocity of the upper plate relative to the lower plate (i.e.
U = U1 + U2), we have U1 = µ2d1(µ2d1 + µ1d2)

−1U and U2 = µ1d2(µ2d1 + µ1d2)
−1U ,

where µ1 and µ2 are the viscosities of the lower and upper fluids, respectively. For
the more general (quadratic) Couette–Poiseuille flow, it is also not difficult to express
U1 and U2 in terms of the two ‘physical’ quantities U and the basic pressure gradient;
however, we will not need these expressions.

The well-known Squire’s theorem (proved for our case in Appendix C; also see
Hesla, Prankch & Preziosi 1986; Joseph & Renardy 1993) allows us to confine our
consideration to two-dimensional perturbed flows (in the x∗y∗-plane). The equation of
the perturbed interface is y∗ = η∗(x∗, t∗), and the Navier–Stokes and incompressibility
equations governing the fluid motion in the two layers are (with j = 1 for the lower
layer and j = 2 for the upper one)

ρ

(
∂v∗

j

∂t∗ + v∗
j · ∇∗v∗

j

)
= −∇∗p∗

j + µj ∇∗2v∗
j , ∇∗ · v∗

j = 0, (2.1)

where ∇∗ = (∂/∂x∗/∂/∂y∗), ρ is the density (of both fluids), v∗
j = (u∗

j , v
∗
j ) is the fluid
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velocity with horizontal component u∗
j and vertical component v∗

j , and p∗
j is the

pressure.
We use the ‘no-slip, no-penetration’ boundary conditions (requiring zero relative

velocities) at the plates: u∗
1 = −U1, v∗

1 = 0 at y∗ = −d1; and u∗
2 = U2, v∗

2 = 0 at
y∗ = d2. The interfacial boundary conditions are as follows. The velocity must be
continuous at the interface: [v∗]21 = 0, where [A]21 = A2 − A1 denotes the jump in A

across the interface, i.e. at y∗ = η∗(x∗, t∗). The interfacial balances of the tangential
and normal stresses, taking into account the jump in the tangential stress due to the
variability of surface tension and the capillary jump in the normal stress, are

1

1 + η∗2
x∗

[(
1 − η∗2

x∗

)
µ(u∗

y∗ + v∗
x∗) + 2η∗2

x∗ µ(v∗
y∗ − u∗

x∗)
]2

1
= − σ ∗

x∗(
1 + η∗2

x∗

)1/2
, (2.2)

[(
1 + η∗2

x∗

)
p∗ − 2µ

(
η∗2

x∗ u
∗
x∗ − η∗

x∗(u∗
y∗ + v∗

x∗) + v∗
y∗

)]2

1
=

η∗
x∗x∗(

1 + η∗2
x∗

)1/2
σ ∗, (2.3)

where σ ∗ is the surface tension. The kinematic interfacial condition is η∗
t∗ = v∗ −u∗η∗

x∗ .
The surface concentration of the insoluble surfactant on the interface, Γ ∗(x∗, t∗),
obeys the following equation (see a simple derivation in Appendix B):

∂(HΓ ∗)

∂t∗ +
∂

∂x∗ (HΓ ∗u∗) = Ds

∂

∂x∗

(
1

H

∂Γ ∗

∂x∗

)
, (2.4)

where H =
√

1 + η∗2
x , and Ds is the surface molecular diffusivity of surfactant;

Ds is usually negligible, and is discarded below. (This equation can be obtained
from the two-dimensional one derived by Wong, Rumschitzki & Maldarelli (1996)
and, independently, by Li & Pozrikidis (1997) (and written there in general moving
curvilinear coordinates); however, showing this appears to be harder than directly
deriving equation (2.4) from first principles, as in Appendix B, by using only fixed
Cartesian coordinates (those entering equation (2.4)).) Since we only deal with
infinitesimal deviations of the concentration Γ ∗(x∗, t∗) from its basic value Γ0,
we can linearize the surface tension dependence on the surfactant concentration:
σ ∗ = σ0 − E (Γ ∗ − Γ0), where σ0 is the basic surface tension and E is a constant.

We introduce dimensionless variables as follows:

(x, y) =
(x∗, y∗)

d1

, t =
t∗

d1µ1/σ0

, (u, v) =
(u∗, v∗)

σ0/µ1

, p =
p∗

σ0/d1

, Γ =
Γ ∗

Γ0

, σ =
σ ∗

σ0

. (2.5)

The dimensionless velocity field of the basic Couette–Poiseuille flow, with a flat
interface, η =0, and uniform concentration of surfactant, Γ̄ = 1 (where the overbar
indicates a basic-state quantity), is

ū1(y) = sy + qy2, v̄1 = 0 for − 1 � y � 0, (2.6)

ū2(y) = ū1(y)/m, v̄2 = 0 for 0 � y � n, (2.7)

where 1 � n = d2/d1 and m = µ2/µ1. The constants s and q will be used in place
of the pressure gradient and the relative velocity of the plates to characterize the
basic flow. As will be seen below, the stability depends only on the ‘shear’ coefficient
s (and not on q), the interfacial slope of the profile ū1(y) of the basic film velocity:
s = dū1(0)/dy.
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3. Stability problem formulation
The formulation of the linear problem for infinitesimal disturbances is the same as

in Frenkel & Halpern (2002) up to the Stokes equations (3.11) below. Beyond that
point, the analyses are different.

We consider the perturbed state with small deviations from the basic flow: η = η̃,
uj = ūj + ũj , vj = ṽj , pj = p̃j and Γ = 1 + Γ̃ (with ūj given in equations (2.6)

and (2.7)). It is convenient to introduce disturbance stream functions ψ̃j such that

ũj = ψ̃j y , and ṽj = −ψ̃j x . We use normal modes

(η̃, ψ̃j , p̃j , Γ̃ ) = [h, φj (y), fj (y), g]eiα(x−ct), (3.1)

where α is the wavenumber of the disturbance, g and h are constants and c = cR +icI

is the complex wave speed. The growth rate γ depends on the imaginary part of c only:
γ = αcI . Linearizing the kinematic boundary condition yields η̃t (x, t) = −ψ̃x(x, 0, t).
Hence h is expressed in terms of the stream function:

h = φ1(0)/c (3.2)

(assuming c �= 0). The linearization of the horizontal and vertical components of the
momentum equations (2.1) yields (j = 1, 2)

mjD(D2 − α2)φj − iαfj = iα Re
Ca

[(ūj − c)Dφj − φjDūj ], (3.3)

iαmj (D
2 − α2)φj + Dfj = −α2 Re

Ca
(ūj − c)φj (3.4)

where m1 = 1, m2 = m, D = d/dy, Re = ρU1d1/µ1, the Reynolds number, and
Ca = µ1U1/σ0, the capillary number. Eliminating the pressure disturbances fj from
equations (3.3) and (3.4), we obtain the well-known Orr–Sommerfeld equations for
the stream-functions:

mj (D
2 − α2)2φj = iα

Re

Ca
[(ūj − c)(D2 − α2)φj − φjD

2ūj ]. (3.5)

The disturbance stream functions φj are subject to the boundary conditions at the
plates and at the interface. The boundary conditions at the plates require

φ1(−1) = φ′
1(−1) = φ2(n) = φ′

2(n) = 0, (3.6)

where we use a prime to indicate differentiation with respect to y. Continuity of
velocity at the interface implies

φ1(0) = φ2(0) (3.7)

and

m(φ′
1(0) − φ′

2(0)) = (1 − m)
s

c
φ1(0). (3.8)

After linearization, the normal stress condition, equation (2.3), yields

mφ′′′
2 (0) − φ′′′

1 (0) − 3α2[mφ′
2(0) − φ′

1(0)] = −i
α3

c
φ2(0). (3.9)

The linearized tangential stress condition, equation (2.2), is mφ′′
2 (0) − φ′′

1 (0) +
α2(mφ2(0) − φ1(0)) = iMαg, where M = EΓ0/σ0 is the Marangoni number. We
replace the constant g in this equation by its expression from the linearized surfactant
transport equation (derived from (2.4)), Γ̃ t + ū1y

(0)η̃x + ψ̃1xy(x, 0, t) = 0, whence

g = φ′
1(0)/c + sφ1(0)/c2. As a result, the linearized tangential-stress balance condition
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is written purely in terms of stream functions:

mφ′′
2 (0) − φ′′

1 (0) + α2[mφ2(0) − φ1(0)] = iM
α

c

[
φ′

1(0) +
s

c
φ1(0)

]
. (3.10)

For each α, the linear (in φj ) equations (3.5)–(3.10) constitute an eigenvalue problem
determining the (complex) phase velocity c. In the limit of Stokes flow, equations (3.3)
and (3.4) reduce to

(D2 − α2)2φj = 0. (3.11)

In Frenkel & Halpern (2002), we considered the long-wave (α → 0) simplification,
D4φj = 0, with general solutions φj (y) = Aj + Bjy + Cjy

2 + Djy
3. Here, we study

the full equations (3.11), with general solutions

φj (y) = Aj coshαy + Bj sinhαy + Cjy coshαy + Djy sinhαy, (3.12)

where the coefficients Aj , Bj , Cj and Dj are determined by the boundary conditions
up to a common normalization factor. (We note that these coefficients can depend on
α, etc., and even be unbounded as α → 0, as in table 1 of Frenkel & Halpern 2002.)
We choose the normalization A1 = 1, then also A2 = 1, so that φ1(0) = 1 = φ2(0) (see
equation (3.7)).

By applying the plate velocity conditions (3.6), and the continuity of tangential
velocity, (3.8), the coefficients C1 and D1 can be expressed in terms of B1, and C2 and
D2 in terms of B2, so that

φ1(y) = cosh(αy) + B1 sinh(αy) +

[
−s2

α

α
B1 + 1 +

sαcα

α

]
y cosh(αy)

+

[(
1 − sαcα

α

)
B1 +

c2
α

α

]
y sinh(αy) (3.13)

and

φ2(y) = cosh(αy) + B2 sinh(αy) −
[

s2
αn

αn2
B2 +

1

n
+

sαncαn

αn2

]
y cosh(αy)

+

[(
−1

n
+

sαncαn

αn2

)
B2 +

c2
αn

αn2

]
y sinh(αy), (3.14)

where

cα = cosh(α), sα = sinh(α), cαn = cosh(αn), sαn = sinh(αn). (3.15)

The interfacial conditions (3.8)–(3.10) then provide the following three equations
involving B1, B2 and c:(
α − s2

α

α

)
B1 +

(
s2
αn

αn2
− α

)
B2 +

n + 1

n
+

1

α

(
sαcα +

sαncαn

n2

)
+

(
1 − 1

m

)
s

c
= 0, (3.16)

2mB2 − 2B1 − i

c
= 0, (3.17)

and [
iM

c

(
s2
α − α2

)
− 2(α − cαsα)

]
B1 − 2αm

n

(
1 − sαncαn

αn

)
B2 + 2

m

n2
c2
αn − 2c2

α

− 2α2(1 − m) − iαM

c

(
1 +

s

c
+

sαcα

α

)
= 0. (3.18)
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Solving equation (3.17) yields B2 in terms of B1. This expression is substituted into
(3.16) which then yields B1, and thus B2, in terms of c. Substituting these expressions
for B1 and B2 in terms of c into (3.18), we obtain a quadratic equation for the phase
velocity:

q2c
2 + q1c + q0 = 0, (3.19)

where the coefficients q0, q1 and q2 are given by

q0 =
1

4

M

α

(
α2n2 − s2

αn

)(
α2 − s2

α

)
− i

2
Ms

(
s2
αn − s2

αn
2
)
, (3.20)

q1 = (m − 1)s(αn2 − n2sαcα + αn − sαncαn)

+
i

2

[
(αn + sαncαn)

(
α − s2

α

α

)
mM +

(
α2n2 − s2

αn

) (
1 +

sαcα

α

)
M

− (αn − sαncαn)

(
α − s2

α

α

)
m −

(
α2n2 − s2

αn

) (
1 − sαcα

α

)]
, (3.21)

q2 =

(
α − s2

α

α

)(
α2n2 + c2

αn

)
m2 + 2

(
αn − α3n2 − sαcαsαncαn

α

)
m

+

(
α +

c2
α

α

) (
α2n2 − s2

αn

)
. (3.22)

Using the well-known formula for solving the quadratic equation, c is an elementary
function of α and the parameters. We are interested in the dependence of the
growth rate γ = αcI on the wavenumber α and the parameters M , s, m and n.
The solution of equation (3.19) shows that the dependence of the growth rate on s

is even: γ (−s) = γ (s). We will consider the growth rate for the parameter ranges
0 � M, s, m < ∞(m > 0) and 1 � n � ∞.

4. Characterization of instability
4.1. Broad overview

In Frenkel & Halpern (2002), we considered only the long-wave disturbances, which
was sufficient to establish the existence of the instability. We showed that, provided
the shear s was non-zero, the system was linearly unstable for m < n2 and stable for
m � n2. This did not exclude the possibility of instability for m � n2 with respect to
shorter-wave disturbances. Our present analysis covering all wavelengths will show
this possibility to exist.

There are always two normal modes. If one of them is growing with time (the growth
rate is positive, see figure 2a) for a certain interval of wavenumbers α, the other one
decays (see figure 2b) for all α. For the growing mode, the ‘dispersion curve’ γ = γ (α)
(at any values of the ‘control parameters’ M , m, s, and n) starts from the zero value at
α = 0. It reaches a maximum γmax at some α = αmax, then falls monotonically, passing
from positive to negative values at some ‘marginal wavenumber’ α0. (This typical
behaviour is illustrated in figure 2(a) for a few representative choices of parameters.)
Thus the (‘longer-wave’) interval of wavenumbers of disturbances to which the system
is unstable is 0 � α1 < α < α0. All the quantities γmax, αmax, α1 and α0 depend on the
control parameters M , m, s and n.

The instability threshold m � n2 applies if M < 5/2. For M > 5/2, there are growing
modes for a finite (and depending on the other parameters) interval of m > n2. The
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Figure 2. Dispersion curves (growth rate versus the wavenumber) of (a) the unstable mode
and (b) the stable mode for a few sample values of the parameters. For the inset, n = 4, M = 5,
s = 1 and m = 17.

corresponding dispersion curves have positive growth rates for a finite α-interval
bounded away from α = 0 (which situation we call the ‘mid-wave’ instability, as
opposed to the long-wave and short-wave ones). An example of such dispersion curve
is shown in figure 2(a) (see the inset).

In all cases we considered, the ratio α0/αmax is of magnitude-order 1, as illustrated by
table 1. (However, it can be large for unrealistically large values of s; see Appendix D.)
Moreover, γmax has a (single) maximum as a function of the Marangoni number M

at fixed values of m, n and s as is illustrated by figure 3(a) for some representative
parameter values. (In fact, our computations suggest that γmax → 0 as M → ∞, the
limit in which the surface is immobilized by the surfactant.) Thus, γ has a maximum
γM at some point in the plane of α and M , as is seen in figure 4 which displays level
curves of γ (α, M) in the (α, M)-plane. We call the coordinates of the point of this
maximum αM and MM (so that γ (αM, MM ) = γM ).
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α0

αmax

(M = V )
α0

αmax

(s = V )
α0

αmax

(m = V )
α0

αmax

(n − 1=V )

V (m = 2, n = 2, s = 1) (M = 1, m = 2, n = 2) (M = 1, n = 20, s = 1) (M = 1, m = 1/2, s = 1)

1
100

1.415 1.953 1.748 1.343

1 1.561 1.561 1.814 1.662
100 2.773 1.486 1.474 1.788

Table 1. Ratio α0/αmax for a wide range of sample parameter values: Each of M , s, m and
n − 1 takes the three values V = 0.01, 1, 100, with the other three parameters being fixed as
shown at the top of the corresponding column.

Each of the quantities γM , αM and MM is a function of the three variables m,
s and n. Each of these functions can be visualized by their level surfaces in the
three-dimensional parameter space with (Cartesian) coordinates m, s and n.

Figures 5 to 7 show the level curves which are cross-sections of such level surfaces
through the n = const planes at four representative values of n, namely n = 1.1,
2, 11 and ∞. In addition, figure 8 is a plot of the same type for the phase velocity
cR . These figures give a broad view of the parametric behaviour of the instability.
[Note that for the case of an infinitely thick layer, n = ∞, the eigenfunctions of the
form (3.12) do not apply. Instead the appropriate eigenfunction for the upper layer is
φ2(y) = e−αy(1+ yB2). The same steps as in § 3 lead to somewhat different coefficients
of the quadratic equation (3.19) for the phase velocity:

q0 = −1

4

M

α

(
α2 − s2

α

)
− i

2
Ms, (4.1)

q1 = (1 − m)s +
i

2

[(
α − s2

α

α

)
mM −

(
1 +

sαcα

α

)
M +

(
α − s2

α

α

)
m +

(
1 − sαcα

α

)]
,

(4.2)

and

q2 =

(
α − s2

α

α

)
m2 − 2

sαcα

α
m −

(
α +

c2
α

α

)
. (4.3)

The same expressions are obtained by multiplying the general coefficients (3.20)–(3.22)
by e−2αn and taking the limit n → ∞.]

The behaviour of γM (figure 5) is the subject of the next subsection. As regards
other characteristic quantities, we notice the following. It appears from figure 6 that
αM is larger where m is smaller, s is larger, and n is larger, with αM already being
close to its n = ∞ asymptotics at n = 11. Figure 7 shows that MM also almost
reaches its n = ∞ asymptotics at n = 11, increasing with m and s. However, at
smaller n, the dependence on m is non-monotonic, having the minimum at m of
magnitude-order one, where the system is close to the stability boundary m = n2. A
similar non-monotonicity appears in figure 8 for the wave speed cMR .

For the other two characteristic quantities, αmax and α0, which are plotted in figure 3
for a few representative points of the parameter space, we find that, for m > 1, each
of them attains a single maximum at some M �= 0, similar to that of γmax(M), and
approaches zero as M → 0. However, for m < 1, the functions αmax(M) and α0(M)
may attain no such maxima, and they do not vanish as M → 0. (See the curves for
m = 1/2 in figure 3.) Instead, they tend to finite limits αmax0 and α00 as M → 0. We
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Figure 3. (a) Maximum growth rate γmax, (b) wavenumber αmax corresponding to the
maximum growth rate, and (c) ‘marginal-stability’ wavenumber α0 corresponding to the zero
growth rate, are all bounded as functions of Marangoni number M (as shown here for a few
sample parameter values given in the legend).

show α00(m) in figure 12 below. The drop of α00 to zero is very steep as m → 1 from
below.

4.2. The growth rate increase with s

It is interesting to look for the conditions which are most favourable for achieving
as strong an instability as possible. From figure 5, it transpires that γM grows as
m decreases and as n and s increase. In fact, the solutions in the limit m = 0 and
n = ∞ show that at large s, the quantities γM and MM have linear asymptotics in s:
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the growth rate always attains a maximum value γM for this quantity and for the values αM

and MM corresponding to γM , see figures 5–7. (Here, m = 1, s = 1 and n = 10.)

γM = γ̂Ms and MM = M̂Ms while αM approaches a constant limit α̂M . The asymptotic
constants γ̂M , M̂M and α̂M are found in a ‘semi analytical’ way, as follows.

In the limit n → ∞ and for m = 0, the coefficients (3.20)–(3.22) of the quadratic
equation (3.19) reduce to

q2 = −B, q1 = s − i
(
1 − 1

2
A − 1

2
AM

)
, q0 =

M

4

(
−2α − 1

α
+ B

)
− 1

2
iMs, (4.4)

where A = 1 + sαcα/α and B = α + c2
α/α. The equation for cI then becomes

4B3c4
I − 8B2

(
1 − 1

2
A − 1

2
AM

)
c3
I

+

[
Bs2 + 5B

(
1 − 1

2
A − 1

2
AM

)2
+

(
−2α − 1

α
+ B

)
B2M

]
c2

I

−
(
1 − 1

2
A − 1

2
AM

) [(
1 − 1

2
A − 1

2
AM

)2
+

(
−2α − 1

α
+ B

)
BM + s2

]
cI

− 1
4
Bs2M2 + 1

2

(
1 − 1

2
− 1

2
AM

) [
s2M +

M

2

(
−2α − 1

α
+ B

)]
= 0. (4.5)

We substitute into this equation MM = M̂Ms and cI = ĉI s and retain only the largest,
s4, terms, so that s4 cancels out. This yields the equation

F̂ (ĉI , α̂, M̂) = 4B3ĉI
4 − 8B2AM̂ĉI

3 +
(
B − 5

2
BA2M̂2

)
ĉI

2

+ 1
2
AM̂

(
1
4
A2M̂2 + 1

)
ĉI − 1

4

(
B + A

)
M̂2 = 0, (4.6)
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Figure 5. Level curves of the maximum (over all α and M) growth rate γM as a function of
m and s for the indicated values of n. The vertical dashed line corresponds to the long-wave
instability threshold m = n2.

which is solved simultaneously with the ‘growth-rate maximum’ equations (see
Appendix A)

α̂
∂F̂

∂α̂
− ĉI

∂F̂

∂ĉI

= 0 and
∂F̂

∂M̂
= 0.

The numerical solutions γ̂M = 0.139, α̂M = 1.12, and M̂M =1.15 agree with the
asymptotic behaviour of the solutions of the full quadratic equation (3.19), as figure 9
shows.



Destabilization of a creeping flow by interfacial surfactant 203

3

2

1

0

–1
–2.0 –1.5 –0.5 0.5 1.0 2.0

log(m)

lo
g(

s)

0.10
0

–0.10
–0.20
–0.30
–0.40
–0.50
–0.60
–0.70
–0.80
–0.90

–1.0 0 1.5

n = �

3

2

1

0

–1
–2.0 –1.5 –0.5 0.5 1.0 2.0

lo
g(

s)

–1.0 0 1.5

n = 11

3

2

1

0

–1
–2.0 –1.5 –0.5 0.5

lo
g(

s)

–1.0 0

n = 2

3

2

1

0

–1
–2.0 –1.5 –0.5

lo
g(

s)

–1.0

n = 1.1

0

log10(αM)

0.20
0.10

0
–0.10
–0.20
–0.30
–0.40
–0.50
–0.60
–0.70
–0.80

0.20
0.10

0
–0.10
–0.20
–0.30
–0.40
–0.50
–0.60
–0.70
–0.80

0.30
0.20
0.10

0
–0.10
–0.20
–0.30
–0.40
–0.50
–0.60
–0.70

Figure 6. Contour plots of αM corresponding to γM of figure 5.

4.3. Long-wave and short-wave limits

Our long-wave analytic results (Frenkel & Halpern 2002) – obtained by using the
long-wave version of equation (3.11), D4φj = 0, and its polynomial solutions φj

(which, we note, cannot be obtained from the eigenfunctions (3.12) by the simple
small-α expansion of the hyperbolic functions there) – are borne out by the results of
the numerical investigation of the complete quadratic equation (3.19) at small α. That
paper raised a question which only the present theory can resolve. Namely, for m �= 1
(no matter how close to the value m = 1) we found that γ (α) = kα2 asymptotically
near α = 0 (with k → ∞ as m → 1), whereas for m = 1, the asymptotic behaviour is
γ (α) = k1α

3/2. This looked like a singularity of the limit m → 1: the exponent jumps
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Figure 7. Contour plots of MM corresponding to γM of figure 5.

from 2 to 3/2. However, figures 5–7 do not show any discontinuity at m = 1, and
in general it is clear that since the growth rate is obtained by solving a quadratic
equation with continuous coefficients, it must be continuous at all wavenumbers and
parameter values. Figure 10 suggests an explanation: the long-wave asymptotics are
non-uniform with respect to small α as m → 1, in the sense that the interval of α near
α = 0 for which the asymptotics yield a good approximation (say, with the relative
error not exceeding 0.1) becomes smaller and smaller (see the horizontal parts of
curves) as m approaches 1. At the same time, there is the interval of ‘intermediate
asymptotics’ with m = 1 behaviour, γ ∝ α3/2 – the parts of the curves which approach
the slanted straight line. This interval is bounded away from zero, but expands toward
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Figure 8. Contour plots of the wave speed cMR corresponding to γM of figure 5.

α = 0 as m → 1, and eventually, at m = 1, becomes the ultimate small-α asymptotics,
since then this region of the α3/2 behaviour has extended all the way to the point
α = 0. From the total continuity of the growth rate it is clear that the unstable mode
changes continuously as the viscosity ratio passes through the point m = 1, and the
same is true for the stable mode (thus, the expressions in the first two lines of table 1
of Frenkel & Halpern (2002) – although marked Mode 1 and Mode 2 there – relate to
the same (as identified by the continuity with respect to m) mode but on the different
sides of the point m = 1).
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We have checked that the different exponents of the long-wave power asymptotics
as n → ∞ and at n = ∞ found in Frenkel & Halpern (2002),

γ =
M(n − 1)

4(1 − m)
α2 for 1 < n < ∞ and m < 1, (4.7)

γ =
(n2 − m)(m + 3mn + 3n2 + n3)M

4(m − 1)(m2 + 4mn + 6mn2 + 4mn3 + n4)
α2 for 1 < n < ∞ and 1 < m, (4.8)

γ = 1/2(M |s|)1/2α3/2 for n = ∞, (4.9)
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Figure 10. Curves of γ /α2 versus α for M = 1, s = 1, n = 2, and different values of m close
to 1. As m → 1 the γ ∝ α3/2 asymptotic behaviour corresponding to m = 1 pushes back to
zero the region of the γ ∝ α2 behaviour characteristic of the m �= 1 cases.

are explained in the same way. (We do not show here the graphs, which are similar
to figure 10.) It is clear that a similar non-uniformity of small-α asymptotics should
exist with respect to the Marangoni number M in the limit M → ∞. Indeed, some
asymptotic coefficients are proportional to a positive power of M , and therefore
the growth rate would have reached arbitrarily large values as M → ∞ for any
(hypothetical) fixed α = αv if the asymptotic formula had held at αv for all M .
However, we know that the growth rate as a function of M (with all its other
arguments being fixed) is bounded.

A somewhat similar phenomenon is illustrated in figure 11 for s → 0. The long-
wave theory (Frenkel & Halpern 2002) indicates, for the values of parameters used
there, the asymptotic small-α behaviour γ = k2α

2 for s �= 0 and γ = −k3α
3 for s = 0,

with positive constants k2 and k3. At s = 0, the α-interval of α2 asymptotics has
degenerated into the single point α = 0, and the interval of α3 (stable) asymptotics
starts immediately at α = 0, in contrast to being bounded away from α = 0 when
s �= 0.

The transition from instability to stability has a somewhat different character as
M → 0 for m < 1. As is clear from figure 12, the marginal wavenumber stays finite
as M → 0, which is in contrast to the transition to stability via s → 0 (see figure 11).
However, at M = 0, the less stable of the two modes has growth rate equal to zero
for all wavenumbers. (This is clear from equation (A 3) because q0R = q0I = 0 for this
case.) Thanks to this, the transition to stability is not of a singular-limit type in this
case as well.

We have checked that the transition to stability on the other boundaries of the
instability region in the parameter space, namely (i) M → 0 for m > 1, (ii) n → 1 and
(iii) m → n2 for M < 5/2 are of the same type as the one for s → 0 (see figure 11). In
fact, the relevant long-wave asymptotics, which can be obtained from equation (A 3),
are, in addition to equations (4.7) and (4.8), the following equations (which were not
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obtained in Frenkel & Halpern 2002):

γ = − M(1 + m)α2

1 + 14m + m2
for n = 1 and m < 1, (4.10)

γ = −M2s2(m + 1)α6

192(m − 1)2
for n = 1 and m > 1, (4.11)

γ = − Mα2

4(1 + n)
for m = n2 and M < 5

2
, (4.12)

γ =
(2M − 5)nα4

60(1 + n)
for m = n2 and M > 5

2
. (4.13)

Equation (4.13) indicates long-wave instability for m = n2. This instability then
should persist for some interval of larger m, such that m > n2. However, the long-
wave asymptotic expression (4.8) asserts (long-wave) stability for m > n2. Nevertheless
the instability does exist, but the α-interval of instability is bounded away from zero
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Figure 12. The M → 0 limit value of marginal wavenumber α00 versus the viscosity ratio m.
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(see inset in figure 2a). The critical value of m is then not n2 but some greater number
mc(s, n, M) > n2. We can find the function mc(s, n, M) by noticing that at criticality
both the growth rate and its derivative with respect to α are zero (because the growth
rate is zero at its maximum). With the zero growth rate, cI = 0, equation (A 3)
becomes F = q2q

2
0I − q1Rq0I q1I + q0R = 0 and the first equation of (A 4) becomes

∂F/∂α = 0. These are two equations for five unknowns: m, n, M , s and α. We
solve them to find the critical values mc(s, n, M) and αc(s, n, M). They are shown
respectively in figures 13 and 14. (Actually, in figure 13 we show the level curves of
the ‘deviation quantity’ (mc − n2)/n2 which is zero if mc = n2.) One can see that both
these quantities grow as s increases to infinity and n decreases to n = 1. At smaller
s and (n − 1), the deviation becomes so small that we fail to compute these small
values, especially at larger M . This is why there are empty spaces near the left-hand
boundaries of some parts of figures 13 and 14. It is clear from figure 13 that in
the region of mid-wave instability there is a minimum threshold value of s for the
instability, in contrast to the all-s instability for the region m < n2.

In the short-wave limit, α → ∞, equation (A 3) becomes, to the leading order,

4c4
I (m + 1)4 + 4c3

I (m + 1)3(M + 1) + c2
I (m + 1)2

(
M + 5

4
(m + 1)2

)
+ 1

8
cI (m + 1)(M + 1)

[
M2 + 6M + 1

]
+ 1

16
M (M + 1)2 = 0. (4.14)

The largest solution is cI = −M/(2(m+1)), independent of s and n. Thus, the system
is stable at large α, with the growth rate of the least-stable mode being asymptotically
linear:

γα→∞(α) ∼ −min (M, 1)

2(m + 1)
α. (4.15)

This is corroborated by numerical solution of the exact equation (3.19).
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Figure 13. Critical manifold deviates from m = n2 for M > 5/2: level curves of the relative
deviation (mc − n2)/n2 as a function of s and n2 for the indicated values of M .

In conclusion, as was mentioned before, there is continuity of growth rate for all
wavenumbers and all parameter values, including the limiting cases m = 1 and n = ∞,
as well as the boundaries of the instability region in the space of parameters. For
mathematical completeness, the less realistic limit σ0 → 0 is considered in Appendix D,
where we show that the convergence of the dispersion function is non-uniform at
large wavenumbers.
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Figure 14. Level curves of the critical wavenumber αc as a function of s and n2 for the
indicated values of M .

5. Conclusions and discussion
The non-inertial instability due to the presence of both the interfacial surfactant

and velocity shear in a two-layer planar flow of the Couette–Poiseuille type, readily
admits a numerical (not requiring more than solving a quadratic equation) and
asymptotic investigation over the entire range of wavenumbers and in the entire
space of the Marangoni number M , the velocity shear s, the viscosity ratio m(> 0),
and the thickness ratio n(� 1). Unlike the well-known instabilities of similar plane
Couette–Poiseuille flows without surfactants which are due to inertia effects, it does
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not require the interfacial jump of viscosity or of any other bulk fluid property; in
particular, it persists for m = 1. In all cases, this instability disappears if s = 0 or
M = 0.

If M < 5/2, the system is unstable if m < n2 and n > 1, and stable otherwise. (It is
interesting to note that the criticality m = n2 appeared, for a different instability, in
Yiantsios & Higgins 1988.) The instability takes place for the interval of wavenumbers
0 <α <α0, where α0 is not greater than 1 in order of magnitude for realistic parametric
regimes. The growth rate has a single maximum γmax at α = αmax (the latter being
less than or – frequently – equal to 1 in order of magnitude), and α0/αmax is of
magnitude-order 1 except for certain unrealistic parameter ranges where it is large
(see the case of extremely small surface tension in Appendix D).

Moreover, the positive growth rate has a single maximum γM at a point (αM, MM)
on the (α, M)-plane. This grows without any bound as m decreases to 0, s grows to
∞, and n grows to ∞. In the limit m = 0 and n = ∞, the asymptotic growths of γM

and MM with s are linear while αM is asymptotically constant as s → ∞.
For M > 5/2, the instability occurs even for some m > n2, and then in a mid-wave

range of wavenumbers 0 < α1 < α < α0, bounded away from zero. In this mid-wave
case only, there is a minimum threshold value of s for the instability.

The growth rate of the unstable mode (one of the two fundamental normal modes
for every wavenumber in the present linear theory) is continuous everywhere (including
such limits as m → 1, s → 0, n → ∞ or M → ∞ for which the long-wave theory seems –
misleadingly – to suggest singularities). However, the convergence of the dispersion
function to its limit is non-uniform at small α for certain parametric limits, and for
the limit of vanishing surface tension it is non-uniform at large α.

The numerical solutions confirm that the small-α growth rate behaves like α2 for
m �= 1 and α3/2 for m = 1 if s �= 0. For s = 0, the less-stable mode decays at a
rate asymptotically ∝ α4 at small α. In the short-wave limit, α → ∞, the decay rate
changes only linearly with α.

Finally, we note that in the limit M → ∞ in which the surface becomes immobilized
by the surfactant monolayer, the growth rate approaches zero.

As is usual when simplified equations are used, one should check that the consistency
conditions have been satisfied. In our case, the Stokes approximation, the consistency
conditions clearly demand that the neglected inertia terms, the right-hand sides of
equations (3.5) with the Stokes approximation results substituted for c(α) and φj (α),
must be much smaller than the terms on the corresponding left-hand sides of equations
(3.5). This can be verified for each specific set of parameters, but it seems difficult to
obtain any general parametric conditions that apply for all possible Couette–Poiseuille
flows at once. However, it is clear that the right-hand side of equation (3.5) can be
made as small as desired by decreasing the non-Stokes parameter Re/Ca there.

The physical mechanism of the instability has already been discussed in Frenkel &
Halpern (2002); we include it here for completeness. It is illuminated by considering
the ratio g/h (of the surfactant concentration amplitude to displacement amplitude)
for the case of plane Couette flow with m = 1 and large n. In figure 15 the unstable
and stable modes with α = 0.5 for M = 1, s = 1, n = 10 are presented. For small
α, one can see that g/h ≈ s/c ∝ ±eiπ/4, where the negative sign corresponds to the
growing mode. Hence, for the growing mode, the surfactant concentration and the
interface disturbance are out of phase by approximately 5π/4, which is quite close
to π (see figure 15a), while for the decaying mode, the phase shift is π/4, which is
closer to 0 (see figure 15b). So, for the growing mode, the surfactant concentration is
a minimum, and thus the surface tension a maximum, approximately where the lower
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Figure 15. (a) Unstable and (b) stable modes for M = 1, m = 1, s = 1, n = 10 and
α = 0.5. Solid curve: the perturbed interface; dashed curve: the disturbance of the surfactant
concentration; dash-dotted curves: the profile of the (scaled) horizontal component of velocity
disturbance at the locations αx = π/2 and αx = 3π/2. (The dotted vertical lines are to guide
the eye).

layer, the film, is thickest; and it is a maximum (surface tension minimum) where
the film is thinnest. Thus there is a surface tension increase, and hence a flow, from
troughs to peaks, which clearly causes the thickness difference to grow. In contrast,
for the stable mode, the spatial variations of the surfactant concentration and the
interface are almost in phase, so there is now a fluid flow in the film from its peaks
to troughs. This causes the disturbances to decay.

It is interesting to note that for the particular case of purely Couette flow, where
the velocity profiles are linear, there are well-known exact analytical solutions (in
terms of integrals with Airy functions: see von Mises 1912 and Hopf 1914, as cited
in Drazin & Reid 1981; see also Hooper 1985 and Joseph & Renardy 1993) of the
unreduced Orr–Sommerfeld equations (3.5) which include the full inertia terms. This
would allow one to consider the influence of inertia on the instability. However, earlier
experience with such exact solutions suggests that the deduction of tractable results
from them is likely to be feasible only for certain asymptotic limits (Drazin & Reid
1981).

Since the present theory has shown the instability of the general Couette–Poiseuille
flow to require only a non-zero velocity shear at the interface, it is tempting to
conjecture that such an instability will be present in other flows with an insoluble
surfactant monolayer, even when such flows have (perhaps, slightly) curved interfaces,
such as those in the (cylindrical) Couette flow of two fluids in a thin gap between
coaxial rotating cylinders. We hope to investigate this question in more detail
elsewhere.

We are grateful to the three, anonymous referees for helpful suggestions.
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Appendix A. Equations for the growth rate
The growth rate is γ = αcI where c satisfies the equation

q2c
2 + q1c + q0 = 0. (A 1)

By taking the imaginary part of this equation, cR can be expressed in terms of cI :

cR =
q1RcI + q0I

2q2cI + q1I

, (A 2)

where q0 = q0R + iq0I and q1 = q1R + iq1I . The above expression for the wave speed
is then substituted into the equation obtained by taking the real part of (A 1), which
yields the following equation for cI :

F (cI , α, M; s, m, n) = −4q3
2c

4
I − 8q2

2q1I c
3
I +

(
4q0Rq2 − 5q2

1I − q2
1R

)
q2c

2
I

+
(
4q0Rq2 − q2

1R − q2
1I

)
q1I cI + q2q

2
0I − q1Rq0I q1I + q0Rq2

1I = 0. (A 3)

The growth rate attains a maximum at some α and M . At this maximum, ∂γ /∂α =
∂γ /∂M = 0 (where γ = αcI ), which become

α
∂F

∂α
− cI

∂F

∂cI

= 0,
∂F

∂M
= 0, (A 4)

by using cI (α, M) as is implicitly defined by (A 3). Equations (A 3) and (A 4) enable
us to determine the quantities cI , α and M corresponding to the maximum rate of
growth, given the values of m, s and n (see figures 5–8).

Appendix B. Derivation of the surfactant equation for the case Γ = Γ (x, t)

First, for simplicity, disregard diffusion, Ds = 0, and consider the change 
N from

time t to t + 
t in the amount of surfactant N =
∫ b

a
Γ

√
1 + η2

x dx contained on the
strip of the interface (of unit width) between the fixed boundaries x = a and x = b

(figure 16). For small 
t we have


N = 
t

∫ b

a

∂

∂t

(
Γ

√
1 + η2

x

)
dx + O(
t2). (B 1)
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On the other hand, 
N = F (a, t)
t − F (b, t)
t where F (x0, t) is the rate at which
the surfactant crosses from the left of x = x0 to the right of it. This depends on
the x-component u of the interfacial velocity at x0 (see figure 16). During the time
interval 
t , it moves through the boundary x = a, the small piece of interface
corresponding to the x interval between x = a and x = a − u
t . This piece, because
of the interfacial slope tan θ = η′(a, t), has the length (up to errors of O(
t2))

x/ cos θ = u
t

√
1 + η2

x , and thus contains the following amount of the surfactant:

F (a, t)
t = Γ (a, t)u(a, η(a), t)
t
√

1 + η2
x(a, t). (B 2)

Similarly, F (b, t) = Γ (b, t)u(b, η(b), t)
√

1 + η2
x(b, t). So,


N = 
t
(
Γ (a, t)u(a, t)

√
1 + η2

x(a, t) − Γ (b, t)u(b, t)
√

1 + η2
x(b, t)

)
+ O(
t2)

= 
t

(
−

∫ b

a

∂

∂x

(
Γ (x, t)u(x, t)

√
1 + η2

x(x, t)
)
dx

)
+ O(
t2), (B 3)

where u(x, t) := u(x, η(x, t), t), a function of x and t only. Equating the two
expressions for 
N , (B 1) and (B 3), and considering the limit 
t → 0, we obtain∫ b

a

− ∂

∂x

(
Γ (x, t)u(x, t)

√
1 + η2

x(x, t)
)
dx =

∫ b

a

∂

∂t

(
Γ (x, t)

√
1 + η2

x(x, t)
)
dx.

This equality, since it holds for all a and b, implies

∂

∂t

(
Γ

√
1 + η2

x

)
+

∂

∂x

(
Γ u

√
1 + η2

x

)
= 0, (B 4)

where u = u(x, η(x, t), t) = u(x, t) is the x-component of velocity at the interface, the
latter being parameterized by x.

Bringing back the diffusion, one must take into consideration that there is a
corresponding contribution to 
N because, during the time interval between t and
t + 
t there is a certain amount of surfactant crossing from the left to the right
through the material point of the interface which has x = a at time t + 
t , that is
x = a − u
t at time t . This amount, up to errors O(
t)2, is given by(

−Ds

∂Γ

∂l

)

t

(
where

∂

∂l
=

1√
1 + η2

x

∂

∂x

)
,

and must be added into equation (B 2); a similar term appears at x = b. This leads
to the equation accounting for the presence of diffusion:

∂

∂t

(
Γ

√
1 + η2

x

)
+

∂

∂x

(
Γ u

√
1 + η2

x

)
= Ds

∂

∂x

(
1√

1 + η2
x

∂Γ

∂x

)
. (B 5)

Appendix C. Squire’s Theorem
For three-dimensional normal modes, equation (3.1) changes to

(ũj , ṽj , w̃j , p̃j , η̃, Γ̃ ) = [Uj (y), Vj (y), Wj (y), fj (y), h, g]eiαx+βz−Gt (C 1)

(where ũj , ṽj and w̃j are the x-, y- and z-components of velocity disturbances). The
governing problem is as follows:

iαf1 = (−α2 − β2 + D2)U1, iαf2 = m(−α2 − β2 + D2)U2 (C 2)
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(x-momentum Stokes’ equations);

Df1 = (−α2 − β2 + D2)V1, Df2 = m(−α2 − β2 + D2)V2 (C 3)

(y-momentum Stokes’ equations);

iβf1 = (−α2 − β2 + D2)W1, iβf2 = m(−α2 − β2 + D2)W2 (C 4)

(z-momentum Stokes’ equations);

iαU1 + iβW1 + DV1 = 0, iαU2 + iβW2 + DV2 = 0 (C 5)

(incompressibility equations);

U1 = V1 = W1 = 0 at y = −1, U2 = V2 = W2 = 0 at y = n (C 6)

(no-slip conditions);

U1(0) + sh = U2(0) +
s

m
h, V1(0) = V2(0), W1(0) = W2(0) (C 7)

(velocity continuity equations);

−iGh = V1(0) (C 8)

(kinematic condition);

iGg + iα [sh + U1(0)] + iβW1(0) = 0 (C 9)

(surfactant equation);

−2 [mDV2(0) − DV1(0)] + f2(0) − f1(0) =
(
−α2 − β2

)
h (C 10)

(normal-stress balance);

m [DU2(0) + iαV2(0)] − DU1(0) − iαV1(0) = iαMg (C 11)

(tangential-stress balance in the x-direction);

m [DW2(0) + iβV2(0)] − DV1(0) − iβV1(0) = iβMg (C 12)

(tangential-stress balance in the z-direction).
It is straightforward to check that for every solution

(α, β, G, U1, V1, W1, U2, V2, W2, f1, f2, h, g) (C 13)

there is a two-dimensional solution

(α̂, β̂ = 0, Ĝ, Û1, V̂1, Ŵ1 = 0, Û2, V̂2, Ŵ2 = 0, f̂ 1, f̂ 2, ĥ, ĝ) (C 14)

of the problem with transformed parameters m̂, n̂, ŝ, M̂ such that

Ĝ = G, α̂2 = α2 + β2, α̂Ûj =αUj + βWj, V̂j = Vj , f̂ j = fj , ĥ = h, ĝ = g,

(C 15)

and

m̂ = m, n̂ = n, α̂ŝ = αs, M̂ = M. (C 16)

The two-dimensional mode has the same growth rate as the three-dimensional one.
Therefore, if the three-dimensional mode is unstable (i.e. the growth rate ImG > 0)
at some set of parameter values, then there is an (equally) unstable two-dimensional
mode for a smaller value ŝ of s (since α̂ � α), with the values of all the other
parameters being identical.
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Figure 17. (a) For zero basic surface tension, σ0 = 0, the growth rate γ
(0)
0 is positive for all

wavenumbers if m < n2 Here, m = 0.1. (b) Large-α behaviour, where the indicated asymptotic
coefficient γ̂ = 64/(M (0)(m+1)2). Here, m = 0.1. (c) For m > n2, the growth rate has a positive
(left) marginal wavenumber α0 and is positive for α > α0. Here, m = 10. (d) α0 grows with m,
logarithmically at large m. (In all plots, M (0) = 2 and n = 2.)

We know that the (largest) growth rate of two-dimensional normal modes always
increases with s (see figure 5). It follows that if at some given parameter values
there are no growing two-dimensional normal modes, then there are no growing
three-dimensional ones as well. (Otherwise, there would have been a growing two-
dimensional mode at a smaller s, and then this mode would be growing at the given
s as well, in contradiction with the assumption.) So, to determine the set of critical
points (for the onset of instability) of the parameter space, it is sufficient to consider
two-dimensional normal modes.

Appendix D. The limit σ0 → 0

Consider the limiting case σ0 → 0. Our non-dimensionalization (2.5) clearly breaks
down at σ0 = 0. Instead, one can choose the units of measurement based on the speed
U (0) = s∗d1, so that t (0) = t∗/(d1/(s

∗d1)) = s∗t∗, where s∗ is the dimensional basic shear
rate at the interface. Similarly, p(0) and σ (0) are obtained by changing from σ0 to µ1U

(0)

in equations (2.5). The new Marangoni number is M (0) = EΓ0/(µ1U
(0)) = M/s, where

s = s∗d1/(σ0/µ1) is interpreted as the modified capillary number, Ca (0) = µ1U
(0)/σ0.
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The modified governing equations are also obtainable formally by substituting c =
c(0)s and M = M (0)s into the old ones. Then we arrive at the quadratic equation
for c(0) of the form (3.19) with the modified coefficients q

(0)
0 = q0/s

2, q
(0)
1 = q1/s and

q
(0)
2 = q2 where the formulae (3.20)–(3.22) for q0, q1 and q2 are taken with M = M (0)s.

(To prevent any misinterpretation we note that the dimensionless s → ∞ here simply
because the unit of measurement σ0/(µ1d1) of the fixed dimensional s∗ approaches
zero as σ0 → 0. The dimensional profiles ū∗ = s∗y + q∗y∗2 do not change as σ0 → 0.)
In the limit s−1 = 0 (corresponding to σ0 = 0), it turns out that for m < n2 the
dispersion curve never crosses the α-axis; the growth rate only approaches zero from
above as α → ∞ – as illustrated in figure 17(a) (with a sample choice of values of
control parameters). We can use the modified equation (A 3), retaining only the terms
which are dominant at large α,

−q
(0)3
1I c

(0)
I + q

(0)
2 q

(0)2
0I − q

(0)
1Rq

(0)
0I q

(0)
1I = 0, (D 1)
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with

q
(0)
0I = −M (0)N

2
, q

(0)
1R = (1 − m)N, q

(0)
1I = − (m + 1)M (0)Nβ

2
, q

(0)
2 = −(m + 1)2Nβ,

(D 2)

where β = e2α/(4α) and N = e2αn/4, to obtain the leading large-α asymptotics (the
subscript 0 indicates the case σ0 = 0):

γ
(0)
0 (α) ∼ 64

M (0)(m + 1)2
α3

e4α
, (D 3)

which is exponentially small and independent of n, and so positive for all n and
m. (In particular, the instability threshold m = n2 for M < 5/2 does not exist for
the case σ0 = 0.) The numerical solutions confirm this asymptotic behaviour, as in
figure 17(b).

The growth rate (D 3) is positive and that for σ0 �= 0, (4.15), is strictly negative.
However, we find that the marginal-stability wavenumber α0 is an unbounded
increasing function of s, and this takes care of continuity of the growth rate function
as s−1 → 0. The asymptotic behaviour of α0 is readily obtained from the modified
equation (A 3) with cI = 0 and the asymptotic expressions given by (D2) and, in
addition, q

(0)
0R = M (0)s−1βN/4 (keeping only the leading terms with respect to the

small parameter s−1 in the equation):

e4α0

α2
0

∼ 128s

M (0)(m + 1)
. (D 4)

This is borne out by the numerical solution of the exact quadratic equation as shown
in figure 18(b). (Also, as an implication, the convergence of the growth rate function is
non-uniform at large wavenumbers in the limit σ0 → 0.) In contrast, the wavenumber
αmax maximizing the growth rate remains bounded as shown in figure 18(a).

The result (D 3) means instability for m � n2 as well. However, we know that
the long waves are stable for m � n2. Thus, there should be a marginal-stability
wavenumber α0 �= 0, as figure 17(c) confirms. As figure 17(d) shows, α0(m) is growing,
logarithmically at large m, independently of M and n. Thus, in the case of m � n2

at σ0 = 0, the instability has a short-wave character, in contrast to the long-wave
instability for σ0 > 0 with M < 5/2 and m<n2. However, it is clear that at any σ0 �= 0,
no matter how small, sufficiently short waves are stabilized, and the instability is only
a mid-wave one.
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